|

A P i i Bl ra e o e et M Al WA i a2

_ /
povora K D

Vs

'

NASA__TM_'II\O] e X § - N — (
(NASA-TM-108128) MEASURING Ad= FOR T09¢ ‘
N ! o - ? H] N93"7
SOFTWARE DEVELGPMENT IN THE uTes
SOFTWARE FNGINEERING LASGRATORY L
(SEL) (wasa) 9 p Unclas ‘
19/61 0136173 E

Frank E, McGarry

National Aeronautics and Space Administration
~ Goddard Space Flight Center /
Greenbelt, Maryland 20771

ABSTRACT

The Ada developmant language and its implied meth-
odologies have the potential to sigmificantly im-
prove the general software development process and
the resulting product. At the National Aeronau-
tics and Space Administration (MASA)/Goddard Space
flight Ceater (GSXC), the Software Engineering
Laboratory (SEL) has been conducting studies and
arperiments wvith the Ada development language.

One such study is the parallel development of a
productioa flight dynamics system by twoc teams of
professiozal programmers. Both teams worked from
the ssme set of requirements, with one team re-
quired to use the sormal development process
(FORTRAN), while the second team used the Ada de-
velopment langusge. Decailed data were collected
during the development phases :o support the azal-
ysis. A discussion of the experimental approach
and some of the key results from early, completed
studies are presenced. -

The Ada lanquage., and its associated methodology,
is potentially one of the mosc sigunificast soft-
vare developseant technologies to appear ia the
lage 20 years. The potential for improvement lies
ia the inherent nature of Ada to support commoaly
accepted, high-quality software engineering prac-
tices such as information hiding and abstractios.
Some reservatiocas as to the expected improvemencs
generaced by Ada lie primarily iz the concera for
the size and overall complaxity of this lan-
quage.l

Although the relative number of reported expe-
riences in developing production-type softwars
systems in Ada is quite small, sigmificane produc-
tivi:{ guu have been reported vhen Ada has been
used. ¢ Some claims and expectatioans may, hov-
ever, be based solely cn subjective lnformation
racher than cn quantitative measuremeat from ac-
tual develcpoent projects. For this reason, many
orqanizations have been reluctant tc commit new
Projects to usiag Ada until published. completed
experiences are available.

“Ada i3 a registered trademark of the U.S. Govern-
ment, Ada Joint Program J0ffica.

Computer Sciences Corporatiom
8728 Colesville Road
Silver Spring, Maryland 20910

There is no doubt that major organmizacions feel
that marked improvement through Ada i3 forthcom-
ind. WNot only has the Departmant of Defenses {DOD)
mandaced the use of Ada for all mission-critical
sydtems, but the National Aeronautics and Space
Administration (NASA) has selected Ada to be the
language Zor the Space Staticn program. Neverthe-
less, numsrous uncertainties and general questions
exist within che NASA framework:

. Will Ada be mature? Will production-
quality compilers and development emvi-
romments be available to produce Space
Stacion softvare?

] Can the development workforce be ade-
quately crained in Ada and associated
mecthodologies ia a timely fashion?

L] What are the effects of Ada on measures
of sigquificant importance such as produc-
tivity, reliability, reuse, maincainabil-
ity. and porcabilicy?

[How should a& 30ftware production envircm-
ment best evolve to an Ada development
euvironment?

Very few empirical studies have been reported to
answer thess and ocher obvious guestioms.

Ihs Need for Eppirzical Studiga

!
To }d.nruiu the feasibility of using such a new
technaoleqgy as Ada for major projects like the
Space Station. studies must be performed to
characterize performance, run-time environments,
and the use of Ada program desigu language (PDL).
Iz additicn, efforts must be made to determine the
maturicty and complexity of the language 30 that
planning, craining, and applicacion can de carried
out wich some comfortable assurance. It is alse
possible that, without project experiences in
applying the lanquage., Ada may not be the right
cholce for such an effort as the Space Statiom.

Ino 1982, the University of Maryland conducted
several studies of Ada. one of which consisced of
redesigning and recoding in Ads a system that had
previcusly been developed in FORTRAN.¢ The

study pcinted out the need for training (in boch
methodology and application), for the development
of lanquage-independent requirements., and for a
production suppore environmaat for Ada development.

ey .
Proceedings of the 21st Annual Hawaii International Couference on System Sciences, January 19“.‘/

~ = e

o B onn BN an B e B

— — g

PRECEDING PAGE BLAMK NOT FILMED

{

) pu— |

-

To gain further insighe into the implications of
Ada, a major study is being conducted at NASA's
Goddard Space Flight Center (GSFC) withia the
Software Engineering Laboratory (SEL). The study
iavolves the near-parallel development of an atti-
tude control simulator by two teams of program-
mers, one usinqg FORTRAN and the other using Ada.
The simulator is in support of the Garma Ray
Observatory (GRO) mission, which is curremcly
scheduled for launch in January 1990,

The problem chosen for this project is a rela-
tively familiar one to personnel within the Flight
Dynamics Division at GSFC. The simulator must
model

. The onboard attitude comtrol system (ACS)

[Sensors and actuators that are used for
conerol

] The 3pacecraft enviromment, which inm-
cludes ephemaris informacion and forces
acting onm the spacecraft

Typically, such a system requires decween 40 and
60 KRSLOC including commencary and ls writtea im
FORTRAN by & team of § to 8§ people working over a
period of 18 to 24 months. The team membars ace
assiguned to work from 1/1 to 1/4 time om such a
project.

Ihe Software Engineering Laboratory (SEL)

This particular study was carried ocut in the
Plight Dymamics Division of WASA/GSFC., This Divi-
sion is responsible for building numerous medium-
to large-scale softvare syscems supporting the
varicus aspects of mission design, actitude deter-
minacion and coatrol, and orbit determinacicn and
control. The SELS has been performing software
development experimeants within this eavironment
for the past 10 years.

The SIL is & cooperacive effort between NASA/GSFC,
the Computer Sciences Department at the Univecsity
of Maryland, and Computer Sciences Corporatioa
(CSC). 1t is funded by NASA/GSFC and functions as
part of the flight dynamics organization at
Goddard. The SIL experimencs with software tech~
nologies by applying proposed techaiques (such as
Ada) to producticn software projects, them study-
ing cthe process and product to decermine the im-
pact of the techaniques. To dace, ths SEL has
studied nearly 60 flight dynamics projects total-~
ing aearly 3 million lines of code. Detailed
software development data are collected throughout
the encire life cycle of the projeccs,S providing
deeper insight into such parameters of interest as
productivicy, reliability, and majiataipabilicy.

TIX ADA EXPERIMENT DESIGN

Goala-Queationy-Metrics

In setting up the plans for the Ada study, the
Goal-Question-Metric paradigm defined by Basilil
was followed. The major goal of the experiment

vas to gain as much insight into Ada as possible
through a major comparacive study. Through naarly
10 years of experience iz conducting similar
studies and collecting daca for studying the
development procsss, the SEL has converged upon a
set of data collection forms that gensrally satis-
fies the types of iavestigations that are of major
interest. In preparing for the Ada experiment, a
1et of questions specific to the study vere devel-
oped to determine if the basic set of dsca collec-
tioa forms used by the SEL would be adequats or if
additional questions and metrics had to be consid-
ered. Io developing the detailed goals and ques-
tions for the experiment., it wvas detarmined thac
several modificacions (additicms) would have to be
made to the existing SEZL data collection forms.

The additional data concerns two arsas of the
experiment:

L) A periodic projection by the Ada task
manager about the estimaced size (com-
ponents® and lines of code) of the com=
pleted system and the development schedule

® More detail for change reports, to deter-
mine vhether some feacurss of Ada vers
drivers for changes or srrors

All the forms were standard SEL forms and were o
be filled out ia detail from the begimaning of both
projects, ilacluding all traianing time for the Ada
ceam.

Data Collection

The daca collection included the following:
) Forms
- Effort data (to the componeat

level), reported weekly (Dy sach
programmer. manager., and support

scaff)
- Projection daca, comsistiag of
=} estimates/sizes/schedules, reported
: monthly

- Chanqe/error data reported for all
changes and errors ideatified during
development

- Componeat characterisctic data re-
ported each time 3 nev component is
defined for the system

- Project characteristics: final size,
dates. methods used for project

) Interviews--All ceam members were inter-
viewed periodically to capture key development
factors at major phases of che project such as
traiaing, desiqn. code, and test. These inter-

*A component is defined as a separately compilable
source fila coacaining, for FORTRAN, a subroutine,
function, or block data and, for Ada, a subpro-
gram, package specification, package body. etc.

views were combined with the data collected eo
produce reports om particular aspects of the proj-
eCt, presenting lesions learned and appropriace
suggestions.

. Accounting Iaformacion--From within the
development enviroament, the development of both
the FORTRAN and Ada systems was tracked by record-
ing the following in!omat_ion on & weekly basis:

- Tocal lines of code that exist for
the syscem

- Tocal number of components that
exist for each system

- Number of changes thac had been made
during that week fo source code

- Amouat of computer time used and
number of runs made

L) Code Analyzer--All SIL projects are ana-
lyzed at project completion by computing detailed
characteristics of the source code. For each com-
ponent and for the total system., the folloving are
computed:

- Executable versus nonaxecutable
Versus commeatary lines

- Number of each type of statement
- Number of operands and operators
- Number and types of components

This information has been used in sumerous pre-
vious projects to study such celacionships as size
and complexity versus error rate and effore.’

Ieam Structure

Boch development teams were formed by a combina-
tion of personnel from GSFC and CSC. A third team
vas formed with the responsibility Zor developing
goals; defining data to be collected: performing
analysis of che projects; aad, in general, ruaning
the experiment. This third team consisced of sen-
ior representacives from GSFC, the Universicy of
Maryland, and CSC.

The structure and ioterrelationship of the three
teams is shown iz Pigure 1. The FORTRAN team erig-
inally (January 1, 1985) had seven team members,
iacluding three from GSFC and four from CSC. The
Ada team also consisted of seven members: four
from GSFC and three from CSC. It was planzed thac
all scaff would average about 65 percent of their
time for the duration of the project. The FORTRAN
team vas observed to have more experience in
developing systeas similar to the GRO simulacor,
whereas the Ada team vay experienced with mare
languages (Table 1). Neither experience, capabil-
icy, nor isterest vere considered by the GSFC aad
CSC managers in forming the development teams: the
makeup of the teams was based almost totally ona
perscanel availability. Oaly the technical maga-
ger of the Ada team was islected specifically for

the project. He is a senior software ;nqinnor
with extensive experience in methodologies sup-

ported by Ada.

[Csuor eauc
OEPNE PROECT " ASSESSLENTY
otva.onq/ TRANNG R~
+ CRJECT-ORIENTRD

WRECTION EVALUATION DESKGN
“h, son *COMPOAITE sPECHE.
SOFTWaRE WEORMATION CATIONMDOEL (Aer. g
o
A0A TEAM (1 PORTRAN TEANIT)
henBATEAMT |

DEVIELON SYSTEM |
USSNG ADA

\T‘ MTA/

Pigure 1. Ada Experiment Organizacion

Table 1. Experience of the Two Development Teams

FORTRAN ADA
CHARACTERISTIC TEAM TEAM
NUMBER OF LANGUAGES KNOWN 3 7
(MEDIAN)
TYPES OF APPUICATION EXPERIENCE 3 4
(MEDIAN)
YEARS OF SOFTWARE DEVELOPMENT 48 8
EXPERIENCE (MEAN)
TEAM MEMBERS WITH DYNAMICS 8% &3%
SIMULATOR EXPERIENCE
Iraiaing

The Ada teas uadervent extensive ctrainlag during
the} first 6 months of the project. This tra‘ning
made use of lectures by University scaff and other
Ada expercs. video tapes. practice problems, aand
key reference books such as <

Wwith Ada by Booch.Y as a major practice prob-
lem, the team developed an Electromic Mail Syscem
(IMS) using recencly studied methodologies as well
as the Ada language. This problem resulted ia
approximately 6000 lines of Ada code and was con-
sidered one of the major successful training de-
vices used by the seven-person team.

During the 6-month training period, the Ada team
devoted very little effort te designing the GRO
system, but they were instructed in the concept of
an actitude concrol simulator. The total effort
expended by the team in this training period was
21 staff-months (an average of 1 seaff-months per
person). [Experiences and recommendations derived
from the 6 months of training were recorded in aa
SEL publication.l0 Tne training emphasized
design methodology rather than Ada syntax and
included the concepts of abstraction, informacion
hiding, and object-oriented design.

MRV Bd | faranois.
omven | IR

14
—F

I

.,
| .

J,‘ Ly r‘ U;;f

L

o

Hanagement

A detailed management/development plas wvas geneér-
ated at the beginming of the project. This plan
included estimated schedules, staffing, traiaing
approaches, data collection, budgets, and revievw
schedules for the Ada dovclopmln:.u A separate
plan was developed by the FORTRAN taam. No ac-
tempt was made %o prevent members of the two teams
from discussing aspects of the project, aslthough
in reality there was very little exchange of la-
formation or discussion pertaining to the project.

The original plan called for the Ada team to be
finished (through system test) in approzimacely

24 months, with the FORTRAN team completing system
testing in approximately 16 months. The 8-month
difference was to account for the S-month trainming
period for the Ada team and the expected learning
curve with the new lanquage. The same life cycle,
preliminary and critical design reviews (PDR and
CDR)., and general high-level implementacion stand-
ards were set for both teams. It was realized,
however, that modifications and exceptions would
have to be made for the Ada team as developmenc
progressed and more was underscood about the proc-
ess.

The TORTRAN team developed its software on a
VAX-11/780 computer under VMS, and the Ada tesm
vas to develop its software omn a VAX 8600 using
the DEC Ada compiler running under VMS. The Ada
team acquired the DEC Ada envirommeat, which in-
cluded the compiler, debugger. and language-
sensitive editor, and this eaviroament wvas used
for the duration of the project.

EXRIRIMENT RESULIS

Both teams began the project ia Jamuary 1985, The
FORTRAN team immediacely beq requir s asal-
ysis, while the Ada team spent the firat 6 months
in training. As shown ia Figure 2, the training
time caused the Ada team to imcur major delays
compared to the FORTRAN schedule. This figure
shows only the calendar time assoclated with each
phase; the level of effort, especially for the Ada
team, varied subscancially over the duration of
the development project.

The FORTRAN team completed all cocde and unit test-
ing by Jaguary 1986 and syscaem testing by May
1986. The system began operatiomal suppart in May
1987, after completing all acceptance testing and
software corrections. The scart of operacicnal
support was about I months later than originally
planned; the delays were caused primarily by sev-
eral major changes to the system requirements.

The Ada team Yegan requiremeats apalysis in July
1985 and completed all code and unit testing by
July 1987. Detailed studies of several aspacts of’
this experiment have been presented elsevhere:
Stark and Murphyi® analyzed the Ada training:
Agresti et al.l4 compared the design character-
istics; and Brophy, Agresti. and Basilild aad
Godfrey and Bropayl? discussed che design les-
sonz learned. Additional implications and obser-
vacions can be made from the compleced analyses i=
three categories:

e Product characteristics

. Process characteristics

° Softvare management implications
Broduct Characrecistics

Although the Ada systsm has not been deliversd, a
preliminary examination of both the FORTRAN and
Ada systems has been conducted. A more decailed
comparison will be made later. The prelininary
analysis revealed the follovwing characteristics of
interesc.

Ihe Ada System I3 Larcer Than the FORIRAN
System. At the start of the project, the study
group 4id not know whether the Ada product would
be larger, smaller. or about the same sixe as the
FORTRAN product in source lines of code (SLOC).
Soma claims had been rsported that redeveloped Ada
systems (from FORTRAN or COBOL) were significancly
smaller in lines of code.? but it wag uncertain
whether these claims were valid for this study.
Table 2 shows that the Ada product is signifi-
cantly larger than the FORTRAN product. This is
true for executables, nonexecutables, and coowmen-
cary. Through review of the code and discussion

REQTS
ANALYSIS
A\ _—— — -
FORTRAN| p—
A
TEAM OESIGN | mepLEMENTATION| STE T CCEPTANCE TEST OPERATIONS
REQTS
ANALYSIS
b —
ADA TRANNG N DESIGN IMPLEMENTATION SYSTEM | ADDITIONAL
TEAM TEST STUDY
Q1 ; Q2 ; a3 ; Q¢ | Q1 ; Q2 ; G : Q¢ [@ [@ ; @ ; a4 -
cries cY 1988 T evier)

Pigure 2. Ada and FORTRAN Project Schedules With Varying Effort Levels,

with the development team, it was determined that
the size differential is driven by two factors:

L] Characteriscics of the Ada lacguage~-Such
factors as type declarations and package specifi-
cations required a great deal of source code to
implement. Alsc. the coding scyle used by the Ada
team provided for relatively long prologs and the
strong use of commentary (including blanks for
formacting).

L] More flexible user interface--Both teams
scarted with che same 3ot of requiremencs. The
[Tequiremeacs are oriented more to the techmical
aAspects of the applicacion and less to the fea-
tures of cthe user interface. The Ada team took
the cpportunity to develop a more contemporary.,
screen-oriented user interface, which required
approximacely 40.000 SLOC, nearly four times the
3ize of the FORTRAN user interface. An additional
factor, the Ada team's not having the schedule
pressure of the FORTRAN team, also encouraged the
Ada team to develop a more ambitious (and larger)
user interface. Both versions, FORTRAN and Ada,
completely sacisfied syscem requirements, buc the
Ada version contained added functionalicy in the
user interface subsystem. HNooe of the other sub-
Syscems contained such extensive functional addi-
tions,

Table 2. Project Size Comparisous im Source
Lises of Code (SLOC)e

[T FoRTRAN ____aca
TOTAL ST 400 | 135.000
TOTAL COMMENTS (INCLUOING IUANK LINES) | 21,000 (473 | 72000 (s3%)
OELIVERED SOURCE INSTRUCTIONS 24,000 (ST) | €3.000 (47%)
REUSED Lavgs 164000 30%) | 2500 (2%)
AVERAGE COMRONENT SIZ8 18 m

“TLOC & OEMMED HIAE AS AN G5-COLLIMN CARD HMAGE,

Ihe Desions Emhodied in the Ada asd PORTRAN

- Some early experiences
using Ada for sciemcific applications® showed
that the desiqm of the Ada system “looked like a
FORTBAN design.” The SEL study group was inter-
ested in whether the designs are esgsectially dif.
ferent or vhether the Ada system is a recoding of
the FORTRAN desiqu. A comparacive study of the
designsl? concluded that the desiqus were dif-
ferent in substantive vays. Some differences were
relaced to Ada: for example. the Ada package com-
cept facilitated the implementacion of the stace
machine abstraction. The Ada system showed many
examples of scate machine abstractions vhen com-
pared with the procedural abstractions found ig
the FORTRAN system. Other differences were 713
Ads related. For example, the paciog of the simu-
lacion is handled differently iz each system.
Agresci et al.12 present a detailed discussion
of the design differences.

Zhe Ada Syatem Does Make {Ise of the Newer

. Fer Ada to
improve the curreant FORTRAN-based software davel-
opment process. the features that distinquish Ada
from FORTRAN must be used. Occurrences of both
tasking and generics exist in the Ada system.

Tasks provide for the user to display ongoing seta-
tus iaformation withoue interrupting the progress
of the simulacicn. Generics are visible in two
roles:

. For packages of highly cohesive proce~
dures that can be iastanciated for dif-
ferent definitions of a floating-point
data type

. For more complex functions (e.g9.., numeri-
cal integration, ephemeris) that are com-
mod to the application domain

The use of tasking and generics further discin-
quishes the Ada system from the FORTIAN system.

P a ri

The introductiom of Ada and relaced technology has
affected the currenc development process within
this parcticular eavironment. Some of the effacts
are discussed in this sectica.

Dawslog. Table 3 lists the scaff-hours of effore
for the FORTRAN and Ada teams and shows that the
Ada project has consumed more resources than the
FORTRAN project. The following sigunificant fac-
tors affect the effort data teportad in che table:

] The FORTRAN team reused 16 percent of its
code from previous FORTRAN dynamics simu-
lacors.

. The Ada product is larger than the
FORTRAN product.

] The Ada user incerface is larger and
significantly different from the FORTRAN
user interface.

The study team expected the Ada systam to require
relacively more desigm effort and less integration
effort than a typical PORTRAN project. The AMa
tean‘'s design effort was greatsr than the FORTRAN
téam‘'s, but Table 3 shaws a much bigger difference
in the codiag phases. The data ig Table 3, how-
ever, use the CDR dace (vhich may be a somewhat
arbitrary or artificial discrimipation batween
design and code) for dividing design effort from
coding effort. Ada raises quescions concerning
the appropriate points for milestoaes macking

Table 1. Project Effort Comparisons

OURATION I
STAFFHOURS | CALENDAR MONTHS

FORTRAN | __aDA TroWTWAN| 4AOA]
TRANNG . 14 w T
REQUREMENTS ANALYSS | 72 1502 13 0
oEsIGN 12y 3801 v 19
CODE AND UNIT TEST qu | e .s 19
SVSTEM TEST 2083 42000 10 Ty
ACCEPTANCE TESTOMITH | «coe A 120 NA
ENHANCEMENTS AND
CORAECTIONS)

SacTuaL HOURS THROUGH SEFTEMBER 13, 1967; ESTIMATED FOR
SEFTEMBEN 13, 1947, TO OECEMBER 31, 1987

A

1

1)

{

Lo

ry r,!

3

ot U0 U g

x

Cransitions batween phases. For approximacely

3 months following the CDR, the Ada team was en-
tering package specifications corresponding to its
design. This effort certainly could be charactar-
ized as design, but was counted a3 coding time in
Table 3. A reasonable condition for an Ada CDR
may be the completion of such package specifica-
tions and type declarations. Ada offers this op-
portunity to check desigi consistency with the
compiler. -

Ihe History of Source Code Growth and Changes

FORTRAN Project3. Tracking the history of addi-
tions of source code to the development library
provides insight ianto project characteristics such
43 dates of releases being met., dates when source
code becomes stable, and periods when various
quantities of code are added (or deleted) possibly
reflecting the additica of entirely reusable com-
ponents. Figure] depicts the weekly hiscory of
source code size for the two projects. Several
points are worth noting:

[} 0f the tocal FCRTRAN code. 36 percent wvas
reused from sarlier projects. This code was added
almost all ac once very early in the coding phass.
which is shown by the very rapid growth early in
the project. o such rapid growth iz noted in the
Ada project., vhars less than 2 perceat of code vas
reused.

. The Ada development shows an axtremely
smooth build approach during the coding phase.
This is noted in the obvious step functions up
through week 30, vhen the final release vas pre-
pared, vwith a gradual increase to completiom of
ceding at week 44.

L} The FORTRAN project deletad over 1S KSLOC
betwveen wveeks 20 and 23. Two major functioms that
had been kepc separate up through week 20 were
marqged iato a commoa functioa by week 13, whea
unnecesSaAry source code was deleted. Details of
this growth hiscory are scill being analyzed and
will be reported in future SEL sctudies.

Ancther parameter that occasionmally leads to in-
teresting comparisoas is the history of changes to
source code. Figure & shows the accusulated
changes by week that were made to the source code.
where a change ls defined as any addition, dele-

ww o ADA

o8 B 8 B

G -]]])
WEEXS FROM FIRST USE OF CONTAGLLED SOURCE CODE LIBRARY

rigure 3. Growth in Source Code

THOUSANDS OF CHANGES

10 n 0 40)
WEEKS FROM ARST USE OF CONTROLLED SOURCE COOE LIBRARY
Figure 4. Growth in Changes to Source Code
tion, or modification made to a component. The
Ada effort shows a change history thac is very
similar ia signacure to the growth history (as
vould probably be sxpected). Thers is no srratic
deviacion from waek €0 week. The normalized
change hiscory (changes divided by curreac system
size) is shown in Pigqure 5, using different nor-
malization factors: ber of P cs (Fig-
ure Sa) and scurce lines of code (Pigure 5b).

— FORTRAN
== ADA
40
g us -
TEAM:
OF CODE
N
H N -
20 ,_n_!.-'/
8
1
&
19 T ODEN L 4 ——
; [] (] n x 40 $0
WEEKS FROM FIRST USE OF CONTROLLED SOURCE COOE LIBRARY

Growth ia Changes Normallized

Figure Sa.
} by Number of Components

8

§

- e =y

g

- g
—— T ——_ -

e -

@) %) T
WEEKS PROM ARST USE OF CONTROLLED SOUACE CODE LIBRARY
Growth ia Changes Normalized
by Source Lines of Code

NUMBER OF CHANGES/SOURCE LINEA OF CODE
B B §
7T 7T

Figure Sh.

Exafiles of Trrors pact

Iaamg. A preliminary examinacion of errors re-
ported by the two development teams shows some

diffarences. When an error is made, necessitating -

a code change, the programmer completes a form
that associates the chaoge with a requirements
error, design error, coding error, ecc. The Ada
team attributed 33 percent of its error correc-
tions to errors ia desigd, versus only 2 percent
design errors for the FORTRAN team. Coding errors
vere cited in $1 percent of the cases for Ada,
versus 38 porénn: for FORTRAN. A likely explana-
tion is che FORTRAN team's reuse of a previous
design versus the Ada team‘s original desigm.

The data collected from the Ada team indicaces the
degree Tto which the use of Ada contributed to a
change or error. Ada vas cited as a comeributing
factor in 28 perceat of the changes ar errors.
Some of the features involved in the chanqes or
errors were exception handling, tasking. and che
visibility comerol of procedures and names.

Software Management Implicacions

Some management observations relaced to staffing
and management training are briefly discussed.

- L] i .
In the current FORTRAN-oriented development proc-~
€38, additional scaff are typically added during
the detailed design and coding phases. Additional
scaff were also added to the Ada team. The time
to phase in nev staff such that they were oriented
and productive vas less with Ada than with FORTRAN.
The package specification clarified the viszible
“eontract™ o provide services to other packages.
Wew scaff were able to implement package bodies
vith some dagree of confidence that they were not
adversely affecting their team members as long as
the “comtract” wvas not violated. In this sense,
the package specification serves to bound the span
of influence of the new team member.

The Ada team underwenc extensive training in che
Ada language and its associaced methodologies. By
using object-oriented desigm, the team aacurally
developed uew representations (object diagrams,
etc.) for characterizing design. At the scheduled
revievs, the team attempced to use the modified
representations, but reviewers had not been
trained ian thase represencations. The overall
coacapts of the Ada design vere therefore ex-
tremely difficult to portray to the uncrained
software managers and led to numerous misunder-
standings and repeated explanations of terminology
and representacions. Efforts will be made ia the
future to define and generalize the companents of
an object-oriented desigm.

Exiatiag Development Standarda aad Guidelines

L) « The
management team originally attempced to adhere to
the 3ot of development standardslS that had been
designed to accommodate the classical waterfall,
functional decomposicion process. Many of the
products defined as necessary for completionm in

certain phases seemed misfits for the Ada team ia
using object-oriented desiga. For exanple, desigmn
reviews were arbitrarily set (“it's about time for
a review”) without having good measures of whether
the team was really ac some specific, definable
milestone. Guidelines on the form and concent of
documents were FORTRAN-oriented: for example, to
include structure charts two levels from the top.
These development quidelines and standards will
require modificacion for object-oriented design.

QISCUSSION/SUMMARY

Although it is premacurs to make a final judgment
of che viability of Ada based on oce particular
seudy, it is possible to make some general obser-
vations. Based on the experiences of the team and
managers studying the Ada experiment. Ada has been
demonstrated to be & viable, usable technology
capable of suppartiag software development for at
leasc this one particular non-real-time applica-
tionm.

Many uncertainties about Ada must still be inves-
tigated, and ics magy immature featurss, such as
the general overall performance, must come of
age. Yet for environments similar to the one
studied. Ada is available and is tapable of sup-
portiag the developmenc of major productios soft-
Vare systems. Based on zhe early results from
this experimenc, NASA managers involved victh the
study have concluded the following:

e Ada can be used to support momeritical,
non-ceal-time projects for flighc dynam-
ics mission suppore.

. Additional studies using production-type
development efforts must be supported.

As of this writing, two additional major mission
3UppOTt projects have been designated to be devel-
oped in Ada in the flight dynamics environment.
Through extensive data collection and close moni-
toring, these projects will also Le used to per-
form more detalled analysis of the characteriscics
of Ada software development, Additiocnal opera-
tional, support syscems mow being desigued for Ada
are evidence of MASA‘s suppact for Ada technol-
o0gqY. It is realized thac ualess major development
projects are initiaced immediately, the evolutionm
to an Ada support emviroament for the Space Sta-
tion will be extremely difficult. if set impos~
sible.

None of the measures agalyzed has indicaced thac
Ads should not be used as the development lan-
quage, although the results indicate that caution,
pacience, and managerial supporet are required ia
applylng the new technology. For this reasosm,
each new project withian the GSFC flight dynamics
area is required to davelop a contingency plan
describing how the project can be completed with-
out complete dependency oa Ada. Such a plan 13
indicative of the extreme caution thac must be
used vhen committing to a cew technology. Ada has
been successful for oze particular experiment. for
one particular application, and in one parcicular
saviroament. but additiomal years of study will be
needed before the caution flag can be lifted.

-
{
-

3

I 1 1 3

—y 1

f

r__‘a
t

R U o A TN (TN N T (O T U (R PR W

In addition to the project daca comparisons that
are being analyzed., the following general obaerva-
tions were made by the study team during the ex-
periment:

] There is a critical need to support addi-
tional Ada development project studies--During the
experiment, members of the study group attempted
to locats similar studieg im production emviron-
meats sc thac results could be compared and gen-
eral information exchanged. 3Secause af the
unsuccessful attempcs of the team to locate such
projects, there is great coamcern that too much
speculacion is being put iato studies and plamning
for AMa applications without enough evidence based
on comparative studies or even general Ada devel-
opment efforts.

. Ada performance is sot a major issue inm
the DEC emvironment studied for zon-real-time
systems--One of the major objecticas to the Ada
lanquage iz the size and complexity of Ada sys-
tems, which has resulted in gemeral performance
questions. Although the SEL has not made major
efforts to aztudy overall performance characteris-
tics, it was found that the performance of the
support environment used ian this study vas ade~
quate to support development and operaticans for
these subject ground support systems. There vas
not a significant degradacion of overall perform-
ance vhen compared to the usual FORTRAN systems.

[} No measures of concern indicated that Ada
cannot be successfully applied today--Although
analysis of chis project and numerous ocher ef-
forts will continue over the next mcaths and even
years, the key measures of concern for this
study~--~cose, reliability, and maintainability (ef-
fort to change/effort to repair)--have not indi-
catsd that Ada cannot support curreant projects.
Iasight has been gained in esach of these factors
and, although none of these measures has shown
dramatic improvement for Ada, none has indicated
either that Ada is not ready for use.

. The unusually large size of the Ada prod-
uct is surprisiag, but somevhat explainable--As
ugted earlier in this paper., the completed Ada
product was three times as large (source lines) as
the FORTRAN version. This size differential vas a
major surprise to zhe study team, but was driven
by three key facts:

- The nature of the Ada lanquage (type
declarations, etc.) results ln more
source lines than FORTRAN requires.

- Major additional functionality was
built i{zto portioas of the Ada ver-
sion iz an attempt to make the sys-
tem better.

- Because the project was not driven
by tight schedules and overly com-
strained project funds (as was the
FORTRAN version), thers was a tem-
dency to continually add capabilicy
to the Ada version.

e Claims of sigunificant productivity gains
with a firse-time use of Ada are questicnable--
This experiment made sigmnificant investments aver
a 30-month period to gain insight izto the impli-
cations of using Ada. 7Two key measures of inter-
est to all software engineers are productivity and
reliability. Despite the fact that this major
effort is probably one of the few of its kind, the
study group feels that no justifiable statements
can yet be made about productivity whenm using
Ada. Many unknowns and additional parameters have
complicated the effort to accurately determine
productivity differences. The numbers obtained
from studies within the SEL show that productivicy
ranges from one-half to twice that of FORTRAN. It
would be premacure to draw any conclusions other
than that the overall cost of using Ada is zot
prohibitive and is similar co that of developing
software in a mors traditional fashion. Oualy by
conducting aumercus additional studies anmd collect-
ing valid data from Ada developmant projects will
we be able to determine the relative effect of Ada
en such 3 key factor as productivity.

The SEL project described hera has led to a
greater understanding of both the Ada lanquage and
its associated development methodologiss. This
one major study at NASA has provided iavaluable
Insight into a technoloqv that has the potential
to affect the sntire softvare development commun-
ity. In additiom, it has provided extensive
training to a large group of scftware developars
and has raised the enthusjiasm for Ada withia the
GSFC enviromment. It has alse, howvever. exposed
gome major areas for cautionm.

Ia addition to the obvious concerns about train-
ing, performance., proper use of Ada, and complee-
ity, the experiences gained in this study have
resulted in a clearsr projection for the transi-
tioa to an Ada development enviroament. Although
all study participants and managers concluded that
Ada is a mosc promising ctechnology and is avail-
able nov for some applicaticns, the sctudy ceam
(from MASA, CSC. and the University of Maryland) '
also felt that the transicion from a typical
FORTRAN enviromment te an Ada production eavironm-
ment wvill take much longer than origimalliy esci-
mated, in fact, from 8 co 10 years.

This single study project has beer active for over
2-1/2 years, with additional efforts being made in
training and planning for other projects. How-
ever, this particular software development eavir-
onment is another 7 or ¥ years avay from being a
routing user of Ada and not primarily “a FORTRAN
shop.” This estimate is based on the time re-
quired to undecrstand the various effects of Ada on
che currenc FORTRAN legacy by plaaning and com-
ducting more studies, trainming technical and
MROAgEMEnt parsonnel, and observing more Ada pro-~
duction projeces.

Despite the discouraging time estimates for the
transition to Ada, this scudy has reinforced the
optimism for Ada‘'s high potential. With such a
major effort required to evelve to this improved
ctechnology. additional studies must be iniciasced
and supported.

REYERENCYS

1. A. Hoare., "The Emperor’'s New Clothes, ™ Communji-
. February 1981
2. T. Couttvriqht. "Ada Tools Update, * Washington,

D.C., SIGada Meeting, September 18, 198s

3. W, Myers, "ada: First Users - Pleased; Pro-
pective Users - Still" Hesicaae,~ Computes,
~ March 1987

F Y
.

V. Basili et al., "Characterizacion of an Ada
Software Developmeat, ~ . September 198%

w
.

Software Eagineering Laboratory, SEL-81-104,
» D. Card,
F. McGarry, G. Page, et al., February 1982

6. V. Basili and g, Selby, "Four Applications of
a Software Data Collection ang Analysis Meth-
L)

odology, ™
[

Study Igatieurs, Augqust 198§

7. J. Bailay and v. Basili, “A Meta-Model for
Software Development Resource Expenditures,”

muﬂxzm_:mm. 1981

4. Software Engineering Laboracory, SEL-87-901,

sation Model (CSM), w. Agresti, June 1987

10.

11.

12.

13.

l4.

1s.

G. Booch, W 4 W .
Menlo Park, California: aonjlnin/Cumminqa
Publishing Co., Inc., 1983

Software Eagineering Laboracory, SEL-a$5-002,
X = : :

.

R. Murphy and M. Stark. October 198§

F. McGarry and 2. Nelson, ~an Experiment Wity
Ada - The GRO Dynamics Simulacor, ™ NASA/GSTC,
April 1985

W. Agresti et al., 'Dc:iqninq With aAda for
Satellitce Simulation,~

;ng<EASA_5nggg_£;3;jgn, Houston, Texas, June

1986

C. Srophy. W. Agresti, and V. Basili, "Lessons
Learned in Use of Ada-Oriented Design Meth-
ods, " L .
Arlingeon, Virginia. March 1987

Software Engineering Laboratory, SEL-87-004,

Wkﬂf-im_m;mgx §. Godfrey and
C. Brophy, July 1987

Software Engineering Laboracory, SEL-81-208,

F. McGarry, G. Page., et al., April 1983

-——

